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Abstract. Artificial neural networks have been widely used for ma-
chine learning tasks such as object recognition. Recent developments
have made use of biologically inspired architectures, such as the Convo-
lutional Neural Network. The nature of the Convolutional Neural Net-
work is that each convolutional layer of the network contains a certain
number of feature maps or kernels. The number of these used has his-
torically been determined on an ad-hoc basis. We propose a theoretical
method for determining the optimal number of feature maps using the
dimensions of the feature map or convolutional kernel. We find that the
empirical data suggests that our theoretical method works for extremely
small receptive fields, but doesn’t generalize as clearly to all receptive
field sizes. Furthermore, we note that architectures that are pyramidal
rather than equally balanced tend to make better use of computational
resources.

1 Introduction

The earliest of the hierarchical Artificial Neural Networks (ANNs) based on the
visual cortex’s architecture was the Neocognitron, first proposed by Fukushima
& Miyake [7]. This network was based on the work of neuroscientists Hubel
& Wiesel [8], who showed the existence of Simple and Complex Cells in the
visual cortex. Subsequently, LeCun et al [10] developed the Convolutional Neural
Network (CNN), which made use of multiple Convolutional and Subsampling
layers, while also using stochastic gradient descent and backpropagation to create
a feed-forward network that performed exceptionally well on image recognition
tasks. The Convolutional Layer of the CNN is equivalent to the Simple Cell Layer
of the Neocognitron, while the Subsampling Layer of the CNN is equivalent to
the Complex Cell Layer of the Neocognitron. Essentially they delocalize features
from the visual receptive field, allowing such features to be identified with a
degree of shift invariance. This unique structure allows the CNN to have two
important advantages over a fully-connected ANN. First, is the use of the local
receptive field, and second is weight-sharing. Both of these advantages have the
effect of decreasing the number of weight parameters in the network, thereby
making computation of these networks easier.
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Fig. 1. The basic architecture of the CNN.
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Fig. 2. A comparison between the Convolutional layer and the Subsampling layer.
Circles represent the receptive fields of the cells of the layer subsequent to the one
represented by the square lattice. On the left, an 8 x 8 input layer feeds into a 6 x 6
convolutional layer using receptive fields of size 3 x 3 with an offset of 1 cell. On the
right, a 6 x 6 input layer feeds into a 2 x 2 subsampling layer using receptive fields of
size 3 x 3 with an offset of 3 cells.

2 Theoretical Analysis

CNNs have particularly many hyper-parameters due to the structure of the net-
work. Determining the optimal hyper-parameters can appear to be a bit of an
art. In particular, the number of feature maps for a given convolutional layer
tends to be chosen based on empirical performance rather than on theoretical
justifications [14]. Numbers in the first convolutional layer range from very small
(3-6) [12], [10], to very large (96-1600) [9], [3], [4], [5].

One wonders then, if there is some sort of theoretical rationale that can
be used to determine the optimal number of feature maps, given other hyper-
parameters. In particular, one would expect that the dimensions of the receptive
field ought to have some influence on this optimum.

A receptive field of width r consists of r2 elements or nodes. If we have feature
maps m then, the maximum number of possible feature maps before duplication,
given an 8-bit grey scale image, is 256r

2

. Since the difference between a grey level
of say, 100 and 101, is roughly negligible, we simplify and reduce the number of
bins in the histogram so to speak from 256 to 2. Looking at binary features as



a way of simplifying the problem is not unheard of [2]. So, given a binary image
the number of possible binary feature maps before duplication is

Ω = 2r
2

, (1)

which is still a rapidly increasing number.
Let’s look at some very simple receptive fields. Take one of size 1x1. How

many feature maps would it take before additional maps become completely re-
dundant? Ω would suggest two. For receptive field sizes 2x2, 3x3, and 4x4, we
get 16, 512, and 65536, respectively. These values represent an upper bound,
beyond which additional feature maps should not improve performance signifi-
cantly. But clearly, not even all of these feature maps would be all that useful. If
we look again at a 2x2 receptive field, regarding those 16 non-redundant feature
maps, shown in Figure 3, are all of them necessary? Assuming a higher layer
that combines features, many of these are actually redundant in practice.
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Fig. 3. The 16 possible binary feature maps of a 2x2 receptive field, with their respec-
tive entropy values.

So how do we determine which ones are useful? Borrowing from Informa-
tion Theory, we can look at how much information each map encodes. Consider
Shannon entropy or the amount of information given

H(X) = −
n∑

i=1

p(xi)log2p(xi). (2)

We can calculate the Shannon entropy of each feature map, again, shown
in Figure 3. What’s interesting here is that we can group the Shannon entropy
values together. In the 2x2 case, there are six patterns equal to an entropy of 1,
while there are eight patterns with an entropy of around 0.81, and two patterns
with an entropy of 0. Thus we have three bins of entropy values so to speak.

Thus, we hypothesize a very simple theoretical method, one that admittedly
simplifies a very complex problem. Shannon entropy has the obvious disadvan-
tage that it does not tell us about the spatial relationship between neighbouring



pixels. And again, we assume binary feature maps. Nevertheless, we propose this
as an initial attempt to approximate the underlying reality.

The number of different possible entropy values for the total binary feature
map set of a particular receptive field size is determined by considering the
number of elements in a receptive field r2. The number of unique ways you can
fill the binary histogram of the possible feature maps then is r2 +1. But roughly
half the patterns are inverses of each other. So the actual number of unique
entropy values is (r2 + 1)/2 if r is odd. Or (r2)/2 + 1 if r is even.

Given the number of different entropy values

h(r) =

{
r2+1
2 if r is odd

r2

2 + 1 if r is even
(3)

the number of useful feature maps is

u = h+ s, (4)

where s is a term that describes the additional useful feature maps above
this minimum of h. We know from the 1x1 receptive field feature map set that
s is at least 1, because when r = 1, the receptive field is a single pixel filter,
and optimally functions as a binary filter. In such a case, u = Ω = 2. In the
minimum case that s = 1, then in the case of 1x1, u = 2. In the case of 2x2,
u = 4. In the case of 3x3, u = 6. This is a lower bound on u that we shall use
until we can determine what s actually is.

To understand this, think of a receptive field that takes up the entire image.
So for a 100x100 image, the receptive field is 100x100. In such a case, each feature
map is in essence a template, and the network performs what is in essence tem-
plate matching. Thus the number of useful feature maps is the number of useful
templates. With enough templates, you can approximate the data set, any more
would be unnecessary. To determine how many such templates would be useful,
consider the number of different Shannon entropies in the feature set. While it
is not guaranteed that two templates with the same entropy would be identical,
two templates with different entropies are certainly different. Also consider the
difference between that 100x100 receptive field, and a 99x99 receptive field. The
differences between the two in terms of number of useful feature maps intuitively
seems negligible. This suggests that s is either a constant, or at most a linearly
increasing term. Also, as h increases, the distance between various entropies de-
creases, to the point where many of the values start to become nearly the same.
Thus, one can expect that for very high values of r, u will be too high.

Any less than u and the theory predicts a drop in performance. Above this
number the theory is agnostic about one of three possible directions. Either the
additional feature maps won’t affect the predictive power of the model, so we
could see a plateau, or the Curse of Dimensionality will cause the predictive
power of the model to begin to drop, or as seen in other papers such as [4], the
predictive power of the model will continue to increase, albeit at a slower rate.

Thus far we have taken care of the first convolutional layer. For the second
convolutional layer and beyond, the question arises of whether or not to stick



to this formula for u, or whether it makes more sense to increase the number
of feature maps in some proportion to the number in the previous convolutional
layer. Upper convolutional layers are not simply taking the pixel intensities, but
instead, combining the feature maps of the lower layer. In which case, it makes
sense to change the formula for u for upper layers to:

ul = vul−1, (5)

where v is some multiplier value and l is the layer. Candidates for this value
range from ul−1 itself, to some constant such as 2 or 4.

There is no substitute for empirical evidence, so we test the theory by run-
ning experiments to exhaustively search for the hypothetical, optimal number of
feature maps.

3 Methodology

To speed up and simplify the experiments, we devised, using the Caltech-101
dataset [6], a specialized dataset, which we shall refer to as the Caltech-20.
The Caltech-20 consists of 20 object categories with 50 images per category
total, divided into a training set of 40 images per category, and a test set of 10
images per category. The 20 categories were selected by finding the 20 image
categories with the most square average dimensions that also had at least 50
example images. The images were also resized to 100 x 100 pixels, with margins
created by irregular image dimensions zero-padded (essentially blacked out). To
simplify the task so as to have one channel rather than three, the images were
also converted to greyscale. The training set totalled 800 images while the test
set consisted of 200 images. Some example images are shown in figure 4.

Fig. 4. Images from the Caltech-20 data set.

CNNs tend to require a fairly significant amount of time to train. One way
to improve temporal performance is to implement these ANNs such that they
are able to use the Graphical Processing Unit (GPU) of certain video cards
rather than merely the CPU of a given machine [15], [16], [13], [9]. NVIDIA
video cards in particular have a parallel computing platform called Compute
Unified Device Architecture (CUDA) that can take full advantage of the many
cores on a typical video card to greatly accelerate parallel computing tasks.
ANNs are quite parallel in nature, and thus quite amenable to this. Thus, for
our implementation of the CNN, we turned to the Python-based Theano library



(http://deeplearning.net/software/theano/) [1]. We were able to find appropri-
ate Deep Learning Python scripts for the CNN. Our tests suggest that the speed
of the CNN using the GPU improved by a factor of eight, as compared to just
using the CPU.

CNNs require special consideration when implementing their architecture. A
method was devised to calculate a usable set of architecture parameters. The
relationship between layers can be described as follows. To calculate the reason-
able dimensions of a square layer from either its previous layer (or next layer)
in the hierarchy requires at least some of the following variables to be assigned.
Let x be the width of the previous (or current) square layer. Let y be the width
of the current (or next) square layer. Let r be the width of the square receptive
field of nodes in the previous (or current) layer to each current (or next) layer
node, and f be the offset distance between the receptive fields of adjacent nodes
in the current (or next) layer. The relationship between these variables is best
described by the equation below.

y =
x− (r − f)

f
, (6)

where, x ≥ y, x ≥ r ≥ f , and f > 0.
For convolutional layers this generalizes because f = 1, to:

y = x− r + 1. (7)

For subsampling layers, this generalizes because r = f, to:

y =
x

f
. (8)

From this we can determine the dimensions of each layer. To describe a CNN,
we adopt a similar convention to [3]. An example architecture for the CNN on
the NORB dataset [11] can be written out as:

96× 96→ 8C5→ S4→ 24C6→ S3→ 24C6→ 100N → 5N ,
where the number before C is the number of feature maps in a convolutional

layer, the number after C is the receptive field width in a convolutional layer,
the number after S is the receptive field width of a subsampling layer, and the
number before N is the number of nodes in a fully connected layer.

For us to effectively test a single convolutional layer, we use a series of archi-
tectures, where v is a variable number of feature maps:

100× 100→ vC1→ S2→ 500N → 20N
100× 100→ vC2→ S3→ 500N → 20N
100× 100→ vC3→ S2→ 500N → 20N
100× 100→ vC5→ S3→ 500N → 20N
100× 100→ vC99→ S1→ 500N → 20N
The reason why we sometimes use 3x3 subsampling receptive fields is that

the size of the convolved feature maps are divisible by 3 but not 2. Otherwise
we choose to use 2x2 subsampling receptive fields where possible. We find that,
with the exception of the unique 99x99 receptive field, not using subsampling



produces too many features and parameters and causes the network to have
difficulty learning. The method of subsampling we use is max-pooling, which
involves taking the maximum value seen in the receptive field of the subsampling
layer.

For testing multiple convolutional layers, we use the following architecture,
where vi is a variable number of feature maps for each layer:

100 × 100 → v1C2 → S3 → v2C2 → S2 → v3C2 → S3 → v4C2 → S2 →
v5C2→ S1→ 500N → 20N

All our networks use the same basic classifier, which is a multi-layer Percep-
tron with 500 hidden nodes and 20 output nodes. Various other parameters for
the CNN were also experimented with to determine the optimal parameters to
use in our experiments. We eventually settled on 100 epochs of training. The
CNN learning rate and learning rate decrement parameters were determined by
trial and error. The learning rate was initially set to 0.1, and gradually decre-
mented to approximately 0.001.

4 Analysis and Results

The following figures are intentionally fitted with a trend line that attempts to
test the hypothesis that a cubic function approximates the data. It should not
be construed to suggest that this is in fact the underlying function.

Figure 5 shows the results of experimenting with different numbers of feature
maps on the accuracy of the CNN trained on the Caltech-20, and using a 1x1
receptive field.
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Fig. 5. Graphs of the accuracy given a variable number of feature maps for a 1x1
receptive field.

As can be seen, the accuracy quickly increases between 1 and 2 feature maps,
and then levels off for more than 2 feature maps. This is consistent with the
theory, albeit, the plateau beyond seems to be neither increasing nor decreasing,
which suggests some kind of saturation point around 2.

Figure 6 shows the results of experimenting with different numbers of feature
maps on the accuracy of the CNN trained on the Caltech-20, and using a 2x2
receptive field.
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Fig. 6. Graphs of the accuracy given a variable number of feature maps for a 2x2
receptive field.

As can be seen, the accuracy quickly increases between 1 and 4 feature maps,
and then levels off for more than 4 feature maps. This is consistent with the
theory where s = 1. The plateau beyond seems to be neither increasing nor
decreasing, which suggests some kind of saturation point around 4.

Figure 7 shows the results of experimenting with different numbers of feature
maps on the accuracy of the CNN trained on the Caltech-20, and using a 3x3
receptive field.
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Fig. 7. Graphs of the accuracy given a variable number of feature maps for a 3x3
receptive field.

As can be seen, the accuracy increases between 1 and 6 feature maps, and
then proceeds to plateau somewhat erratically. Unlike the previous receptive field
sizes however, there are accuracies greater than that found at u. The plateau
also appears less stable.

Figure 8 shows the results of experimenting with different numbers of feature
maps on the accuracy of the CNN trained on the Caltech-20, and using a 5x5
receptive field.

As can be seen, the accuracy quickly increases between 1 and 4 feature maps,
and then plateaus for a while before spreading out rather chaotically. This may
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Fig. 8. Graphs of the accuracy given a variable number of feature maps for a 5x5
receptive field.

be explained by some combination of overfitting, the curse of dimensionality, or
too high a learning rate causing failure to converge.

Figure 9 show the results of experimenting with different numbers of feature
maps on the accuracy of the CNN trained on the Caltech-20, and using a 99x99
receptive field.
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Fig. 9. Graphs of the accuracy given a variable number of feature maps for a 99x99
receptive field.

As can be seen, the accuracy steadily increases between 1 and 210 feature
maps, and then begins to plateau. As expected, our u value of 4901 is much too
high for the very large value of r = 99.

Lastly, we look at the effect of multiple convolutional layers. Figure 10 shows
what happens when the first layer of a 12 layer CNN with 5 convolutional layers
is held constant at 4 feature maps, and the upper layers are multiplied by the
number in the layer before it. So for a multiple v of 2, the feature maps for each
layer would be 4, 8, 16, 32, 64, respectively. We refer to this as the pyramidal
structure.

Clearly, increasing the number of feature maps in the upper layers has a
significant impact. Perhaps not coincidentally, the best performing architecture
we have encountered so far was this architecture with 4, 20, 100, 500, and 2500
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Fig. 10. Graph of the accuracy given a variable number of feature maps for a network
with 5 convolutional layers of 2x2 receptive field. Here the higher layers are a multiple
of the lower layers.

feature maps in each respective layer. It achieved an accuracy of 54.5% on our
Caltech-20 data set. This can be contrasted with the effect of having the same
number of feature maps in each layer as shown in figure 11. We refer to this as
the equal structure.
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Fig. 11. Graph of the accuracy given a variable number of feature maps for a network
with 5 convolutional layers of 2x2 receptive field. Here each layer has the same number
of feature maps.

While the accuracy rises with the number of feature maps as well, it should
be noted that for the computational cost, the pyramidal structure appears to be
a better use of resources than the equal structure.

5 Discussion

It appears that the theoretical method seems to hold well for receptive fields of
size 1x1, and 2x2. For larger sizes, the data is not as clear. The data from the
3x3 and 5x5 receptive field experiments suggests that there can be complicating
factors involved that cause the data to spread. Such factors could include, the
curse of dimensionality, and also, technical issues such as failure to converge



due to too high a learning rate, or overfitting. As our experimental set up is
intentionally very simple, we lack many of the normalizing methods that might
otherwise improve performance. The data from the 99x99 receptive field exper-
iment is interesting because it starts to plateau much sooner than predicted by
the equation for u. However, we mentioned before that this would probably hap-
pen with the current version of u. The number of different entropies at r = 99
are probably very close together and an improved u equation should take this
into account.

It should also be emphasized that our results could be particular to our choice
of hyper-parameters such as learning rate and our choice of a very small dataset.

Nevertheless, what we do not find, is the clear and simple monotonically
increasing function seen in [4], and [5]. Rather, the data shows that after an
initial rise, the function seems to plateau and it is uncertain whether it can be
construed to be rising or falling or stable.

This is not the case with highly layered networks however, which do appear
to show a monotonically increasing function in terms of increasing the number of
feature maps. However, this could well be due to the optimal number of feature
maps in the last layer being exceedingly high due to multiplier effects.

One thing that could considerably improve our work would be finding some
kind of measure of spatial entropy rather than relying on Shannon entropy.
The problem with Shannon entropy is of course, that it does not consider the
potential information that comes from the arrangement of neighbouring pixels.
We might very well improve our estimates of u by taking into consideration the
spatial entropy in h, rather than relying on the s term.

Future work should likely include looking at what the optimal receptive field
size is. Our experiments hint at this value as being greater than 3x3 and [4]
suggests that it is less than 8x8, but performing the exhaustive search without
knowing the optimal number of feature maps for each receptive field size is a
computationally complex task.

As with [9], we find that more convolutional layers seems to improve per-
formance. The optimal number of such layers is something else that should be
looked at in the future.

6 Conclusions

Our experiments provided some additional data to consider for anyone interested
in optimizing a CNN. Though the theoretical method is not clear beyond certain
extremely small or extremely large receptive fields, it does suggest that there
is some relationship between the receptive field size and the number of useful
feature maps in a given convolutional layer of a CNN. It nevertheless may prove
to be a useful approximation.

Our experiments also suggest that when comparing architectures with equal
numbers of feature maps in each layer with architectures that have pyramidal
schemes where the number of feature maps increase by some multiple, that the
pyramidal methods are a more effective use of computing resources.
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